Enter a problem...
Finite Math Examples
, ,
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply by .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add and .
Step 2.2.1.2.2
Subtract from .
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply by .
Step 2.4.1.1.2.2
Multiply by .
Step 2.4.1.1.2.3
Multiply by .
Step 2.4.1.2
Simplify by adding terms.
Step 2.4.1.2.1
Add and .
Step 2.4.1.2.2
Add and .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Subtract from both sides of the equation.
Step 3.1.3
Add and .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Move the negative in front of the fraction.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply .
Step 4.2.1.1.2.1
Combine and .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.1.3
Multiply .
Step 4.2.1.1.3.1
Multiply by .
Step 4.2.1.1.3.2
Combine and .
Step 4.2.1.1.3.3
Multiply by .
Step 4.2.1.1.4
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify the numerator.
Step 4.2.1.5.1
Multiply by .
Step 4.2.1.5.2
Subtract from .
Step 4.2.1.6
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.7
Combine and .
Step 4.2.1.8
Combine the numerators over the common denominator.
Step 4.2.1.9
Combine the numerators over the common denominator.
Step 4.2.1.10
Multiply by .
Step 4.2.1.11
Subtract from .
Step 4.2.1.12
Factor out of .
Step 4.2.1.12.1
Factor out of .
Step 4.2.1.12.2
Factor out of .
Step 4.2.1.12.3
Factor out of .
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Simplify each term.
Step 4.4.1.1.1
Apply the distributive property.
Step 4.4.1.1.2
Multiply .
Step 4.4.1.1.2.1
Combine and .
Step 4.4.1.1.2.2
Multiply by .
Step 4.4.1.1.3
Multiply .
Step 4.4.1.1.3.1
Multiply by .
Step 4.4.1.1.3.2
Combine and .
Step 4.4.1.1.3.3
Multiply by .
Step 4.4.1.1.4
Move the negative in front of the fraction.
Step 4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.3
Combine and .
Step 4.4.1.4
Combine the numerators over the common denominator.
Step 4.4.1.5
Simplify the numerator.
Step 4.4.1.5.1
Multiply by .
Step 4.4.1.5.2
Subtract from .
Step 4.4.1.6
Move the negative in front of the fraction.
Step 4.4.1.7
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.8
Combine and .
Step 4.4.1.9
Combine the numerators over the common denominator.
Step 4.4.1.10
Combine the numerators over the common denominator.
Step 4.4.1.11
Multiply by .
Step 4.4.1.12
Subtract from .
Step 4.4.1.13
Rewrite as .
Step 4.4.1.14
Factor out of .
Step 4.4.1.15
Factor out of .
Step 4.4.1.16
Move the negative in front of the fraction.
Step 5
Step 5.1
Multiply both sides by .
Step 5.2
Simplify.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Cancel the common factor of .
Step 5.2.1.1.1.1
Cancel the common factor.
Step 5.2.1.1.1.2
Rewrite the expression.
Step 5.2.1.1.2
Apply the distributive property.
Step 5.2.1.1.3
Simplify the expression.
Step 5.2.1.1.3.1
Multiply by .
Step 5.2.1.1.3.2
Multiply by .
Step 5.2.1.1.3.3
Reorder and .
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Multiply by .
Step 5.3
Solve for .
Step 5.3.1
Move all terms not containing to the right side of the equation.
Step 5.3.1.1
Subtract from both sides of the equation.
Step 5.3.1.2
Subtract from .
Step 5.3.2
Divide each term in by and simplify.
Step 5.3.2.1
Divide each term in by .
Step 5.3.2.2
Simplify the left side.
Step 5.3.2.2.1
Cancel the common factor of .
Step 5.3.2.2.1.1
Cancel the common factor.
Step 5.3.2.2.1.2
Divide by .
Step 5.3.2.3
Simplify the right side.
Step 5.3.2.3.1
Divide by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify the numerator.
Step 6.2.1.1.1
Multiply by .
Step 6.2.1.1.2
Subtract from .
Step 6.2.1.2
Simplify the expression.
Step 6.2.1.2.1
Divide by .
Step 6.2.1.2.2
Multiply by .
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Combine the numerators over the common denominator.
Step 6.4.1.2
Simplify the expression.
Step 6.4.1.2.1
Multiply by .
Step 6.4.1.2.2
Subtract from .
Step 6.4.1.2.3
Divide by .
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: